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Abstract
We describe a Nambu–Jacobi structure as a ‘Nambu–Poisson’ structure on a
certain Jacobi algebroid. It is shown that the matched pair of Leibniz algebroids
for a Nambu–Jacobi structure is the Leibniz algebroid associated with this
‘Nambu–Poisson’ structure. We also see that a different Leibniz algebroid is
associated with a Nambu–Jacobi structure, which is a natural generalization of
the Lie algebroid associated with a Jacobi structure.

PACS number: 02.40.Ma
Mathematics Subject Classification: 17A32, 53C15, 53D10, 53D17

1. Introduction

The aim of this paper is to understand a Nambu–Jacobi structure as a deformed ‘Nambu–
Poisson’ structure by means of differential calculus on Lie algebroids in the presence of a
one-cocycle. It is motivated from the results in [17] and [10] for a Jacobi structure.

The Jacobi structure [21], which gives a unified approach for two important notions of
the Poisson structure and the contact structure, has been studied in many papers such as
[2, 12, 19, 20, 25, 31]. In [17] it was shown that, using analogues of the Schouten bracket,
the Lie derivative and the exterior differential, one can describe formally a Jacobi structure
and its associated Lie algebroid structure on the bundle of 1-jets as a Poisson structure
and its associated Lie algebroid structure on the cotangent bundle. In [10] the ‘deformed’
bracket and operations above were treated as the natural bracket and operations on the Jacobi
algebroid. A Jacobi algebroid is equivalent to a Lie algebroid endowed with a one-cocycle.
It is also equivalent to a Schouten–Jacobi bracket for first-order differential operators, which
will be suitable for the description of frame-free mechanics. In [32], the Jacobi structure was
generalized in the direction of the Dirac structure [3, 4], which was called the E1(M)-Dirac
structure and the associated foliation was investigated in [18]. As the Lie algebroid and the
Dirac structure are becoming recognized as the basic structures for the description of dynamical
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systems with or without constraints, it would be of interest to investigate the ‘Dirac structure’
on a Jacobi algebroid further.

A Nambu–Jacobi structure [14, 16, 26, 27] is an extension of the notion of a Jacobi
structure. It is defined by a multilinear skew-symmetric bracket on the space of smooth
functions which is a first-order differential operator as in the case of a Jacobi structure, and
satisfies the fundamental identity

{f1, . . . , fp−1, {g1, . . . , gp}} =
p∑

i=1

{g1, . . . , {f1, . . . , fp−1, gi}, . . . , gp}

for all f1, . . . , fp−1, g1, . . . , gp ∈ C∞(M). When the bracket satisfies the Leibniz rule

{g1g2, f1, . . . , fp−1} = g1{g2, f1, . . . , fp−1} + g2{g1, f1, . . . , fp−1},
it is nothing but a Nambu–Poisson structure [29]. The equivalent definition of order p � 3
using multivector fields is given in [11, 15, 27].

In recent years, Nambu–Poisson structures have received much attention in both physics
and mathematics [5–9, 11, 13, 15, 26, 28, 30, 33]. A description of a Nambu–Jacobi structure
in terms of the Jacobi algebroid will be of help in generalizing the theories using derivations
to those using first-order differential operators.

Although it is a natural extension, there are some differences between the Nambu–Jacobi
structure of order 2 (that is, the Jacobi structure) and that of order greater than 2. For example,
a Nambu–Jacobi structure of order p � 3 has the pair of associated foliations whose leaves
are of dimension p, p − 1 or zero and is endowed with volume forms, while the foliation
associated with a Jacobi structure consists of contact or locally conformal symplectic leaves.
Besides, it was proved in [16] that a Nambu–Jacobi structure of order greater than 2 associates
a Leibniz algebroid, which is a non-commutative version of the Lie algebroid and it is not
generalized to the case of order two.

In this paper, we describe a Nambu–Jacobi structure on a manifold as a ‘Nambu–Poisson
structure’ using the notion of a Jacobi algebroid as in the case of order 2. We also see that
a Nambu–Jacobi structure gives another Leibniz algebroid which is a natural generalization
of the Lie algebroid associated with a Jacobi structure (theorem 3.6). The Jacobi algebroid
is obtained by choosing the one-cocycle (0, p − 1) consisting of zero 1-form and a constant
function p−1. It gives simple descriptions of both the definition of a Nambu–Jacobi structure
using multivector fields and the associated Leibniz algebroid structure; in fact, they formally
correspond to those for the Nambu–Poisson structure [15]. The new Leibniz algebroid structure
which we obtain is a formal counterpart of that associated with a Nambu–Poisson structure
given in [11]. This will lead us to the generalization of the Nambu-Dirac manifold [11] in
the direction of the Nambu–Jacobi manifold. The Nambu-Dirac structure is an extension of
the Dirac structure to higher orders, and it contains the Dirac structure, the Nambu–Poisson
structure and the multisymplectic structure in the sense of [1] (a similar extension is proposed
in [33], which is the generalized strong Nambu-Dirac structure in [11]). The generalization
will be an extension of E1(M)-Dirac structure to higher orders.

This paper is organized as follows. In section 2, we review the basic definitions and
properties of Nambu–Jacobi structures and Leibniz algebroids. We also recall the differential
calculus on Lie algebroids in the presence of a one-cocycle and its applications to Jacobi
structures. In section 3, we interpret a Nambu–Jacobi structure as a ‘Nambu–Poisson structure’
on a certain Jacobi algebroid and give a simple description of the associated Leibniz algebroid.
We also see that a different Leibniz algebroid is associated with a Nambu–Jacobi structure,
which is a natural generalization of the Lie algebroid associated with a Jacobi structure. Finally
we discuss a generalization of our results from the case of manifolds to that of Lie algebroids.
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It still remains unclear why the one-cocycle (0, p − 1) plays a special role for Nambu–
Jacobi structures of order p. It may be the clue that

(�,E)(d(0,1)f1 ∧ · · · ∧ d(0,1)fp−1) = (�,E)(d(0,p−1)f)

where

f =
(

1

p − 1

p∑
i=1

(−1)i−1fi df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ dfp−1, 0

)
.

We will return to this question in the future.

2. Definitions and known facts

2.1. Nambu–Jacobi structures and Leibniz algebroids

First, we review the notions of Nambu–Jacobi structure and Leibniz algebroid.
A Nambu–Jacobi structure of order p on a manifold M(2 � p � dim M) is a p-linear

skew-symmetric map {, . . . , } : C∞(M) × · · · × C∞(M) → C∞(M) satisfying

(i) (first-order differential operation)

{g1g2, f1, . . . , fp−1} = g1{g2, f1, . . . , fp−1} + g2{g1, f1, . . . , fp−1}
− g1g2{1, f1, . . . , fp−1}

(ii) (fundamental identity)

{f1, . . . , fp−1, {g1, . . . , gp}} =
p∑

i=1

{g1, . . . , {f1, . . . , fp−1, gi}, . . . , gp}

for all f1, . . . , fp−1, g1, . . . , gp ∈ C∞(M). We call a manifold M endowed with such a
bracket a Nambu–Jacobi manifold of order p. A Nambu–Jacobi manifold of order 2 is nothing
but a Jacobi manifold and a Nambu–Poisson manifold is a Nambu–Jacobi manifold whose
bracket vanishes if one of the functions is constant.

A Nambu–Jacobi manifold (M, {, . . . , }) of order p is equivalently defined as the pair of
a p-vector field � and a (p − 1)-vector field E. We have

[�,�] = −2E ∧ � [E,�] = 0

for p = 2, that is, a Jacobi structure. For p � 3 we have (the condition of the following
theorem is slightly restricted in [11], which is easily loosened)

Theorem 2.1 [11]. Let � be a p-vector field and E a (p − 1)-vector field where p � 2, from
which we assume � is locally decomposable (that is, � = X1 ∧ · · · ∧ Xp for some vector
fields X1, . . . , Xp around a point where � �= 0) when p = 2. The pair (�,E) defines a
Nambu–Jacobi structure if and only if

[�(α),�] = (−1)p(�(dα))� (1)

[E(β),E] = (−1)p−1(E(dβ))E (2)

[E(β),�] = (−1)p−1(E(dβ))� (3)

[�(α),E] = (−1)p(�(dα))E + (−1)p−1�(d(E(α))) (4)

for any (p − 1)-form α and (p − 2)-form β.



6716 Y Hagiwara

We remark that we recover the definition of a Nambu–Poisson structure when E = 0. In
fact, if the order p of a Nambu–Jacobi structure (�,E) is greater than 2, then � and E are
Nambu–Poisson structures of orders p and p − 1, respectively (see [14, 27]).

Example 2.2.

(i) Let M be an n-dimensional manifold, ν its co-volume field (that is, an n-vector field)
and f an arbitrary function. The pair (ν, ν(df )) is a Nambu–Jacobi structure of order n
on M.

(ii) Let (M,�) be a nonsingular Nambu–Poisson manifold of order p < dim M and v a
vector field transverse to the associated foliation. The pair (v ∧�,�) is a Nambu–Jacobi
structure of order p + 1.

As well as a Nambu–Poisson manifold, a Nambu–Jacobi manifold of order p � 3
associates the structure called the Leibniz algebroid. A Leibniz algebra (V , [[, ]]) is an R-
module V , where R is a commutative ring, endowed with a bilinear map [[, ]] : V × V → V

satisfying

[[a1, [[a2, a3]]]] = [[[[a1, a2]], a3]] + [[a2, [[a1, a3]]]] (5)

for a1, a2, a3 ∈ V (see [22, 23]). The map [[, ]] is called the Leibniz bracket on V and (5) the
Leibniz identity (remark that we use the term Leibniz rule for the derivation law). If [[, ]] is
additionally skew-symmetric, then the Leibniz identity is just the Jacobi identity and (V , [[, ]])
is a Lie algebra. Therefore, a Leibniz algebra is a non-commutative variant of a Lie algebra.
A Leibniz algebroid is defined in the same way by generalizing the notion of a Lie algebroid
[24].

Definition 2.3 [15]. A Leibniz algebroid is a smooth vector bundle � : A → M with a Leibniz
algebra structure [[, ]] on �(A) and a bundle map ρ : A → T M , called an anchor, such that
the induced map ρ : �(A) → �(T M) satisfies the derivation law

[[X, f Y ]] = ((ρ(X))f )Y + f [[X, Y ]]

for all X, Y ∈ �(A) and f ∈ C∞(M).

We remark that the condition ρ([[X, Y ]]) = [ρ(X), ρ(Y )] is included in the original
definition [15], which in fact follows from the other conditions of the definition as in the case
of a Lie algebroid.

Theorem 2.4 [16]. Let (M,�,E) be a Nambu–Jacobi manifold of order p � 3. Then the
triple (∧p−1T ∗M ⊕ ∧p−2T ∗M, [[, ]], ρ(�,E)) is a Leibniz algebroid over M where

[[(α, α′), (β, β ′)]] = (L�(α)β + (−1)p(�(dα))β + LE(α′)β

+ (−1)p−1(E(dα′))β + (−1)p−1 d(E(α)) ∧ β ′,
LE(α′)β

′ + (−1)p−1(E(dα′))β ′ + L�(α)β
′ + (−1)p(�(dα))β ′)

ρ(�,E)(α, α′) = �(α) + E(α′)

for (α, α′), (β, β ′) ∈ ∧p−1T ∗M ⊕ ∧p−2T ∗M , respectively.

Although this is proved in [16], we will give an alternative proof later. When E = 0,
we recover the Leibniz algebroid structure on ∧p−1T ∗M associated with the Nambu–Poisson
manifold (M,�) [15].

Two Leibniz algebroids A1, A2 over M are said to form a matched pair of Leibniz
algebroids [16] if the Whitney sum A = A1 ⊕ A2 has a Leibniz algebroid structure such
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that A1 and A2 are Leibniz subalgebroids of A. When (�,E) is as above, ∧p−1T ∗M and
∧p−2T ∗M have Leibniz algebroid structures associated with the Nambu–Poisson structures
� and E respectively. In fact, the above theorem implies that these two Leibniz algebroids
form a matched pair of Leibniz algebroids.

2.2. Differential calculus on Lie algebroids in the presence of a one-cocycle

We mainly summarize differential calculus on Lie algebroids in the presence of a one-cocycle
and its applications to Jacobi structures which is investigated in [10, 17].

Let A → M be a vector bundle. For r � 1, we can identify �(∧r (A × R)) with
�(∧rA) ⊕ �(∧r−1A) by

(P,Q)((α1, f1), . . . , (αr , fr)) = P(α1, . . . , αr) +
r∑

i=1

(−1)i+1fiQ(α1, . . . , α̂i , . . . , αr)

for any (P,Q) ∈ �(∧rA) ⊕ �(∧r−1A) and (αi, fi) ∈ �(A∗) ⊕ C∞(M).
Suppose that (A, [, ], ρ) be a Lie algebroid over a manifold M. The next proposition is a

version of the case T M × R given in [24].

Proposition 2.5. The vector bundle A × R → M has a Lie algebroid structure whose bracket
and anchor are given by

[(X, f ), (Y, g)] = ([X, Y ], (ρ(X))g − (ρ(Y ))f ) ρ̃(X, f ) = ρ(X).

Let φ ∈ �(A∗) be a one-cocycle in the Lie algebroid cohomology complex with trivial
coefficients, that is, φ satisfies the equation

φ([X, Y ]) = (ρ(X))(φ(Y )) − (ρ(Y ))(φ(X))

for all X, Y ∈ �(A). It induces the ‘φ-deformed’ action ρφ : �(A) × C∞(M) → C∞(M)

defined by

(ρφ(X))f = (ρ(X))f + φ(X)f

for X ∈ �(A) and f ∈ C∞(M). Thus we can consider the ‘φ-deformed’ Lie algebroid
cohomology with trivial coefficients. The restriction of its coboundary operator to �(∧∗A∗)
is called the φ-differential and denoted by dφ . It satisfies

dφα = dα + φ ∧ α.

The φ-Lie derivative Lφ

X : �(∧∗A∗) → �(∧∗A∗) with respect to X ∈ �(A) is also defined in
the usual manner. We have

Lφ

Xf = ιX(dφf ) Lφ

Xα = dφ(ιXα) + ιX(dφα)

for f ∈ C∞(M) and α ∈ �(∧kA∗). It is an analogue of the usual Cartan formula. However,
some of the calculus is deformed by φ.

Proposition 2.6.

Lφ

f Xα = fLφ

Xα + df ∧ ιXα

dφ(α ∧ α′) = dφα ∧ α′ + (−1)kα ∧ dφα′ − φ ∧ α ∧ α′

Lφ

X(α ∧ α′) = Lφ

Xα ∧ α′ + α ∧ Lφ

Xα′ − φ(X)α ∧ α′

for α ∈ �(∧kA∗), α′ ∈ �(∧k′
A∗) and X ∈ �(A).

It was also elucidated in [10, 17] that, for a Lie algebroid and its one-cocycle, there also
exists the ‘φ-deformed’ Schouten bracket (we follow the convention of signs used in [10]).
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Theorem 2.7. Let (A, [, ], ρ) be a Lie algebroid and φ ∈ �(A∗) a one-cocycle. There exists
a unique operation [, ]φ : �(∧rA) × �(∧r ′

A) → �(∧r+r ′−1A) such that

[X, f ]φ = (ρφ(X))f

[X, Y ]φ = [X, Y ]

[P,P ′]φ = −(−1)(r−1)(r ′−1)[P ′, P ]φ

[P,P ′ ∧ P ′′]φ = [P,P ′]φ ∧ P ′′ + (−1)(r−1)r ′
P ′ ∧ [P,P ′′]φ − (ιφP ) ∧ P ′ ∧ P ′′

for f ∈ C∞(M),X, Y ∈ �(A), P ∈ �(∧rA), P ′ ∈ �(∧r ′
A) and P ′′ ∈ �(∧r ′′

A).
Furthermore, it satisfies the graded Jacobi identity∑

cycl.

(−1)(r−1)(r ′′−1)[[P,P ′]φ, P ′′]φ = 0.

This operation is called the φ-Schouten bracket [17] or Schouten–Jacobi bracket [10] of
(A, [, ], ρ). It is connected with the usual Schouten bracket by the formula

[P,P ′]φ = [P,P ′] + (r − 1)P ∧ (ιφP ′) − (−1)r−1(r ′ − 1)(ιφP ) ∧ P ′. (6)

The φ-Lie derivative Lφ

X : �(∧∗A) → �(∧∗A) with respect to X ∈ �(A) is defined by

Lφ

XP = [X,P ]φ

and it follows

Lφ

X[P,P ′]φ = [
Lφ

XP, P ′]φ
+

[
P,Lφ

XP ′]φ

for P ∈ �(∧rA) and P ′ ∈ �(∧r ′
A), which is an analogue of the usual Lie derivation.

However, it is deduced that the following are deformed by φ.

Proposition 2.8.

Lφ

f XP = fLφ

XP − X ∧ P(df )

Lφ

X(P ∧ P ′) = Lφ

XP ∧ P ′ + P ∧ Lφ

XP ′ − φ(X)P ∧ P ′

Lφ

X(P (α)) = (
Lφ

XP
)
(α) + P

(
Lφ

Xα
)

+ (k − 1)φ(X)P (α) (k � r)

Lφ

X(α(P )) = (
Lφ

Xα
)
(P ) + α

(
Lφ

XP
)

+ (r − 1)φ(X)α(P ) (r � k)

for f ∈ C∞(M),X ∈ �(A), P ∈ �(∧rA), P ′ ∈ �(∧r ′
A) and α ∈ �(∧kA∗).

Now, we will consider the Lie algebroid (A × R, [, ], ρ̃) given by proposition 2.5. It
follows that (0, 1) ∈ �(A∗) × C∞(M) 	 �(A∗ × R) is a one-cocycle. Applying (6) to this
case, we have the following propositions for Lie algebroid Jacobi structures.

Proposition 2.9 [17]. Let (A, [, ], ρ) be a Lie algebroid. A two-section (π,E) ∈ �(∧2(A×R))

of A × R is a Jacobi structure for (A, [, ], ρ) if and only if

[(π,E), (π,E)](0,1) = 0.

Proposition 2.10 [17]. Suppose that (π,E) ∈ �(∧2(A × R)) is a Jacobi structure for a Lie
algebroid (A, [, ], ρ). Then it associates the Lie algebroid structure on A∗ × R whose bracket
and anchor are written respectively as

[α, β] = L(0,1)

π(α)β − L(0,1)

π(β)α − d(0,1)(π(α, β))

ρ(π,E) = ρ̃ ◦ π
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where π = (π,E), α = (α, f ), β = (β, g) and ρ̃ is the anchor of A×R (see proposition 2.5).
Moreover,

�(A∗ × R) π−−−→ �(A × R)

ρ(π,E)

∣∣↓ ↙ ρ̃

�(T M)

is a commutative diagram of Lie algebra homomorphisms.

By proposition 2.10, we recover the Lie algebroid structure on T ∗M × R associated with
a Jacobi manifold (M, π,E) given in [19] as

[(α, f ), (β, g)] = (Lπ(α)β − Lπ(β)α − d(π(α, β)) + fLEβ − gLEα − ιE(α ∧ β),

π(β, α) + (π(α))g − (π(β))f + f Eg − gEf )

ρ(π,E)(α, f ) = ρ(π(α) + f E)

for (α, f ), (β, g) ∈ �(A∗) × C∞(M).
It may be seen that a Jacobi structure for a Lie algebroid A is formally interpreted as a

‘Poisson structure’ on A × R in the presence of the one-cocycle (0, 1). In fact, the pair of
a Lie algebroid and a one-cocycle is equivalent to the notion of Jacobi algebroid [10], and
dφ,Lφ, [, ]φ above are defined as natural ones on it. Therefore, a Jacobi structure on a Lie
algebroid is formally considered a ‘Poisson structure’ for the Jacobi algebroid.

3. Nambu–Jacobi structures in terms of Jacobi algebroids

3.1. Nambu–Jacobi structures revisited

Now, we will describe Nambu–Jacobi structures and associated Leibniz algebroids using the
notion of Jacobi algebroid, as in the case of Jacobi structures.

We will treat a Nambu–Jacobi structure of order p as a p-section of T M × R. The right
‘deformation’ is obtained by taking the one-cocycle (0, p−1) ∈ �(T ∗M ×R). First, we show
the condition for Π ∈ �(∧p(T M × R)) 	 �(∧pT M) ⊕ �(∧p−1T M) to be a Nambu–Jacobi
structure.

Proposition 3.1. Suppose that p � 3. Then Π ∈ �(∧p(T M × R)) is a Nambu–Jacobi
structure of order p on M if and only if

[Π(α),Π]φ = (−1)p(Π(dφα + (p − 2)φ ∧ α))Π (7)

for any α ∈ �(∧p−1(T ∗M × R)), where φ = (0, p − 1) ∈ �(T ∗M × R).

Proof. Put Π = (�,E) and α = (α, β). Suppose that Π is a Nambu–Jacobi structure. Since
(1)–(4) and

dφ(α, β) = (dα, (p − 1)α − dβ)

we calculate

[Π(α),Π]φ = [Π(α),Π] − (p − 1)(φ(Π(α)))Π

= ([�(α) + E(β),�], [�(α) + E(β),E] − [(−1)p−1E(α),�])

+ (−1)p(p − 1)Π(φ ∧ α)Π

= (−1)p((�,E)(d(α, β)))(�,E) + (−1)p(p − 1)Π(φ ∧ α)Π

= (−1)p(Π(dφα + (p − 2)φ ∧ α))Π.

Conversely, it follows easily that we have the definition (1)–(4) from (7). �
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Equation (7) also gives an equivalent definition for a locally decomposable Jacobi structure
Π, that is, Π = X1 ∧ X2 locally for some X1,X2 ∈ �(T M × R) around a point where
Π �= 0. We will see later that an arbitrary Nambu–Jacobi structure is locally decomposable.

Recall that the bundle T M × R is a Lie algebroid and ρ̃ denotes its anchor (see
proposition 2.5). Theorem 2.4 is written as follows:

Theorem 3.2. Let Π ∈ �(∧p(T M × R)) be a Nambu–Jacobi structure of order p � 2, from
which we assume Π is locally decomposable as a section of ∧2(T M × R) when p = 2. Then
the triple (∧p−1T ∗M ⊕ ∧p−2T ∗M, [[, ]], ρΠ) is a Leibniz algebroid where ρΠ = ρ̃ ◦ Π and

[[α, β]] = Lφ

Π(α)β + (−1)p(Π(dφα))β

for any α, β ∈ �(∧p−1(T ∗M × R)), where φ = (0, p − 1) ∈ �(T ∗M × R). Conversely, any
p-section Π which gives ∧p−1(T ∗M × R) a Leibniz algebroid structure above is necessarily
a Nambu–Jacobi structure on M.

Proof. We will verify that it corresponds with theorem 2.4 first, and then give an alternative
proof using (7).

It is easily seen that the anchor ρΠ corresponds with ρ(�,E). We will see that brackets
agree. Put Π = (�,E), α = (α, α′) and β = (β, β ′) respectively. Using the calculus
prepared in section 2.2, we compute

Lφ

Π(α)β = (L�(α)β + LE(α′)β + (−1)p−1 d(E(α)) ∧ β ′ + (−1)p−1(p − 1)(E(α))β,

L�(α)β
′ + (−1)p−1(E(α))β ′)

and

(Π(dφα))β = (�(dα) + (p − 1)E(α),−E(dα′))(β, β ′)

from which we recover the bracket in theorem 2.4.
Now we will give an alternative proof. From (7) it follows

Π([[α, β]]) = [Π(α),Π(β)] − (
Lφ

Π(α)Π
)
β − (p − 2)Π(α ∧ φ)Π(β)

+ (−1)p(Π(dφα))Π(β)

= [Π(α),Π(β)].

We also have

[[α, f β]] = (ρ̃(Π(α))f )β + f [[α, β]]

thus we must check the Leibniz identity. Using the calculus prepared in section 2.2, for
α, β, γ ∈ �(∧p−1(T M × R)) we calculate

[[α, [[β, γ]]]] = Lφ

Π(α)L
φ

Π(β)γ + (−1)p(LΠ(α)(Π(dφβ)))γ + (−1)p(Π(dφβ))Lφ

Π(α)γ

+ (−1)p(Π(dφα))Lφ

Π(β)γ + (Π(dφα))(Π(dφβ))γ

[[[[α, β]], γ]] = Lφ

[Π(α),Π(β)]γ + (−1)p
(
Π

(
Lφ

Π(α)d
φβ

))
γ

+ Π(d(Π(dφα)) ∧ β)γ + (Π(dφα))(Π(dφβ))γ

= Lφ

[Π(α),Π(β)]γ + (−1)p(LΠ(α)(Π(dφβ)))γ − (−1)p(LΠ(β)(Π(dφα)))γ

[[β, [[α, γ]]]] = Lφ

Π(β)L
φ

Π(α)γ

+ (−1)p(LΠ(β)(Π(dφα)))γ + (−1)p(Π(dφα))Lφ

Π(β)γ

+ (−1)p(Π(dφβ))Lφ

Π(α)γ + (Π(dφβ))(Π(dφα))γ

and we have the Leibniz identity. �
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Example 3.3. Let f1, . . . , fp−1, g1, . . . , gp−1 be functions on a Nambu–Jacobi manifold
(M, {, . . . , }) of order p. We have

[[d(0,1)f1 ∧ · · · ∧ d(0,1)fp−1, d
(0,1)g1 ∧ · · · ∧ d(0,1)gp−1]]

=
p−1∑
i=1

d(0,1)g1 ∧ · · · ∧ d(0,1){f1, . . . , fp−1, gi} ∧ · · · ∧ d(0,1)gp−1

which formally corresponds to the Leibniz bracket for powers of the differentials of functions
on a Nambu–Poisson manifold (see [28]).

3.2. Alternative Leibniz algebroids associated with Nambu–Jacobi structures

We have shown that the Leibniz algebroid associated with a Nambu–Jacobi manifold given
by theorem 2.4 formally corresponds to that for a Nambu–Poisson manifold. For a Nambu–
Poisson manifold, another associated Leibniz algebroid structure on the same bundle was
given in [11], which is the natural generalization of the Lie algebroid structure on the cotangent
bundle associated with a Poisson manifold. We will elucidate that a Nambu–Jacobi structure
has the corresponding associated Leibniz algebroid structures.

First, we will see that a Nambu–Jacobi structure Π of order p � 3 on a manifold M is
locally decomposable. When Π = (�,E) �= 0 at a point on M, either � �= 0 or E �= 0 holds
locally around this point. At the point where � �= 0, we may write Π = (�,�(θ)) locally
for some 1-form θ (see [27]), and since � = X1 ∧ · · ·∧Xp for some vector fields X1, . . . , Xp

on M (recall that � is a Nambu–Poisson structure), we have

(�,�(θ)) = (X1, X1(θ)) ∧ · · · ∧ (Xp,Xp(θ)).

On the other hand, at the point where E �= 0 we have

Π = (v ∧ E,E) = (v, 1) ∧ (E, 0)

for some vector field v (see also [27]) and (E, 0) is locally decomposable at this point since E
is. We have shown

Proposition 3.4. A Nambu–Jacobi structure Π ∈ �(∧p(T M × R)) of order p � 3
on a manifold M is locally decomposable, that is, at a point where Π �= 0 there exist
X1, . . . ,Xp ∈ �(T M × R) such that

Π = X1 ∧ · · · ∧ Xp

locally around this point.

The decomposability ensures the following.

Lemma 3.5. Let Π be a Nambu–Jacobi structure of order p on M which we assume locally
decomposable when p = 2. Then

Π(ιΠ(β)d
φα) = (−1)p−1(Π(dφα))Π(β) (8)

for any α, β ∈ �(∧p−1(T ∗M × R)).

Proof. For any γ ∈ �(T ∗M × R), we have

(−1)p−1(Π(ιΠ(β)d
φα))(γ) = Π(γ ∧ ιΠ(β)d

φα) = (Π(γ))(ιΠ(β)d
φα)

= (Π(β) ∧ Π(γ))(dφα) = (Π(β ∧ γ))Π(dφα) = (Π(dφα))(Π(β))(γ). �

Now we will see that another Leibniz algebroid structure is associated with a Nambu–
Jacobi structure of order p.
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Theorem 3.6. Let Π ∈ �(∧p(T M × R)) be a Nambu–Jacobi structure of order p on M. Then
the triple (∧p−1T ∗M ⊕ ∧p−2T ∗M, [[, ]]′, ρΠ) is a Leibniz algebroid where ρΠ = ρ̃ ◦ Π and

[[α, β]]′ = Lφ

Π(α)β − ιΠ(β)d
φα

for any α, β ∈ �(∧p−1(T ∗M × R)), where φ = (0, p − 1) ∈ �(T ∗M × R) and ρ̃ is the
anchor of T M × R. Conversely, any p-section Π which gives ∧p−1(T ∗M × R) a Leibniz
algebroid structure above is necessarily a Nambu–Jacobi structure on M.

Proof. We have proposition 2.10 for p = 2. Suppose p � 3. The derivation law

[[α, f β]]′ = (ρ̃(Π(α))f )β + f [[α, β]]′

is proved as in theorem 3.2. It follows from lemma 3.5 that the last sentence of the theorem
and that ρΠ induces a Leibniz algebra homomorphism

ρΠ([[α, β]]′) = [ρΠ(α), ρΠ(β)]

also hold as in theorem 3.2. We calculate the Leibniz identity. For all α, β, γ ∈
�(∧p−1(T M × R), we have

[[α, [[β, γ]]′]]′ = Lφ

Π(α)

(
Lφ

Π(β)γ − ιΠ(γ)d
φβ

) − ιΠ([[β,γ]]′)d
φα

= Lφ

Π(α)L
φ

Π(β)γ − Lφ

Π(α)(d
φβ(Π(γ))) − dφα

(
Lφ

Π(β)(Π(γ))
)

= Lφ

Π(α)L
φ

Π(β)γ − (
Lφ

Π(α)d
φβ

)
(Π(γ))

− dφβ
(
Lφ

Π(α)(Π(γ))
) − dφα

(
Lφ

Π(β)(Π(γ))
)

[[[[α, β]]′, γ]]′ = Lφ

[Π(α),Π(β)]γ − ιΠ(γ)d
φ
(
Lφ

Π(α)β − ιΠ(β)d
φα

)
= Lφ

[Π(α),Π(β)]γ − (
Lφ

Π(α)d
φβ

)
(Π(γ)) +

(
Lφ

Π(β)d
φα

)
(Π(γ))

[[β, [[α, γ]]′]]′ = Lφ

Π(β)L
φ

Π(α)γ − (
Lφ

Π(β)d
φα

)
(Π(γ))

− dφα
(
Lφ

Π(β)(Π(γ))
) − dφβ

(
Lφ

Π(α)(Π(γ))
)
.

Thus we get the Leibniz identity. �

It is a natural generalization of the Lie algebroid structure on the bundle of 1-jets associated
with a Jacobi manifold (see proposition 2.10). Moreover, when Π defines a Nambu–Poisson
structure, that is, Π = (�, 0), we obtain the Leibniz algebroid structure on the bundle of
(p − 1)-forms given in [11] as

[[α, β]]′ = L�(α)β − ι�(β) dα ρ�(α) = �(α)

for α, β ∈ �(∧p−1T ∗M). We remark that, as in the case of p = 2, it follows that

�(∧p−1(T ∗M × R)) Π−−−→ �(T M × R)

ρΠ
∣∣↓ ↙ ρ̃

�(T M)

is a commutative diagram of Leibniz algebra homomorphisms. We also remark that it is not a
matched pair of Leibniz algebroids as in theorem 2.4.

Example 3.7. Let Π ∈ �(∧p(T M × R)) be a Nambu–Jacobi structure of order p on M. For
d(0,p−1)-closed sections α, β ∈ �(∧p−1(T ∗M × R)), it follows [[α, β]]′ = [[α, β]]. Since

d(0,1)f1 ∧ · · · ∧ d(0,1)fp−1 = d(0,p−1)f
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where

f =
(

1

p − 1

p∑
i=1

(−1)i−1fidf1 ∧ · · · d̂fi · · · ∧ dfp−1, 0

)
we have

[[d(0,1)f1 ∧ · · · ∧ d(0,1)fp−1, d
(0,1)g1 ∧ · · · ∧ d(0,1)gp−1]]′

=
p−1∑
i=1

d(0,1)g1 ∧ · · · ∧ d(0,1){f1, . . . , fp−1, gi} ∧ · · · ∧ d(0,1)gp−1

for functions f1, . . . , fp−1, g1, . . . , gp−1.

In general, the two Leibniz algebroid structures do not agree.
We also have the Nambu–Jacobi counterpart of another theorem given in [11]:

Theorem 3.8. Let Π ∈ �(∧p(T M × R)) be a Nambu–Jacobi structure of order p on M. Then
the triple (∧p−1(T ∗M × R) ⊕ (T ∗M × R), [[, ]]′′, ρ ′′

Π) is a Leibniz algebroid over M where
[[, ]]′′ and ρ ′′

Π are defined respectively by

[[(α, α′), (β, β′)]]′′ = (
Lφ

Π(α)β − ιΠ(β)d
φα,Lφ

Π(α)β
′ − ιΠ(β′)d

φα
)

ρ ′′
Π(α, α′) = ρ̃ ◦ Π(α)

for (α, α′), (β, β′) ∈ �(∧p−1(T ∗M×R)⊕(T ∗M×R)), where φ = (0, p−1) ∈ �(T ∗M×R)

and ρ̃ is the anchor of T M × R. Moreover,

�(∧p−1(T ∗M × R) ⊕ (T ∗M × R)) pr1−−−→ �(∧p−1(T ∗M × R))

ρ ′′
Π

∣∣↓ ↙ ρΠ

�(T M)

is a commutative diagram of Leibniz algebra homomorphisms where pr1 : ∧p−1(T ∗M ×R)⊕
(T ∗M × R) → ∧p−1(T ∗M × R) is the natural projection and the Leibniz algebroid structure
on ∧p−1(T ∗M × R) is given by theorem 3.6.

Proof. We only need the Leibniz identity for �(T ∗M × R) components, which is proved
by formally replacing α, β with α′, β′ respectively in the proof of the Leibniz identity in
theorem 3.6. �

Finally, we discuss the generalization of our results from on a manifold to on a Lie
algebroid. When we define a Nambu–Poisson structure � of order p � 3 on a Lie algebroid
A as a p-section � of A satisfying [�(α),�] = (−1)p(�(dα))� for any α ∈ �(∧p−1A∗),
the Leibniz algebroid structure given in [15] (the case of a Nambu–Poisson structure in
theorem 2.4) is generalized to the case of a Lie algebroid. However, to generalize those
given in [11] (the cases of a Nambu–Poisson structure in theorems 3.6 and 3.8), we need
the decomposability of � which is obscured and different from the case on a manifold. A
sufficient condition for the decomposability is given as follows:

Lemma 3.9. Suppose that �(A∗) is generated by the differentials of functions. Then a
Nambu–Poisson structure � of order p � 3 on A is locally decomposable to sections of A

Proof. Computing [�(f α),�] where f is a function, we have (�(α∧γ ))� = �(α)∧�(γ )

for any α ∈ �(∧p−1A∗) and γ ∈ �(A∗). �
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In [33], there is a different definition of a Nambu–Poisson structure on a Lie algebroid A;
it is defined as a p-section � of A satisfying

[�(α),�](β) = −�(ι�(β) dα) (9)

for any α, β ∈ �(∧p−1A∗). It follows that the Leibniz algebroid structure given in [11] is
generalized to the case of a Lie algebroid under this definition. However, to generalize that
given in [15], we need the decomposability of � which is not clear also in this definition; a
sufficient condition for the decomposability has also been given by the lemma above. Both
the definitions coincide if the decomposability is satisfied.

We have two definitions of the Nambu–Jacobi structure on a Lie algebroid as those of the
Nambu–Poisson structure above. From one definition we deduce theorem 3.2, and from the
other theorems 3.6 and 3.8. Both coincide if the decomposability is satisfied.

Although the necessity of decomposability makes it difficult to generalize our results to
the case of a Lie algebroid, it seems to be worth considering a ‘Nambu–Poisson structure’
on an arbitrary Jacobi algebroid. We will define a (Nambu–)Poisson structure (of order 2)
on a Jacobi algebroid (A, φ) as a 2-section Π of A satisfying [Π,Π]φ = 0 and a Nambu–
Poisson structure of order p � 3 as a p-section Π of A which satisfies equation (7) for any
(p − 1)-section α. Then when (A, φ) = (T ∗M, 0) we have the Nambu–Poisson structure
on a manifold M, and when (A, φ) = (T ∗M × R, (0, p − 1)), we have the Nambu–Jacobi
structure on M. That is, it will give a general framework for the unified theory. Theorem 3.2
is generalized to the case of an arbitrary Jacobi algebroid. If Π is locally decomposable,
equation (8) of lemma 3.5 holds for any (p − 1)-sections α and β, and thus theorems 3.6
and 3.8 are also generalized. We finally remark that we may have another definition of the
Nambu–Poisson structure on a Jacobi algebroid using (9). The circumstances are similar.
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